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BALLISTIC RESEARCH LABORATORIES

REPORT NO. 9Tk

CHMurphy /mjf
Aberdeen Proving Ground, Ma.
February 1956 '

THE MEASUREMENT OF NON-LINEAR FORCES AND MOMENTS
BY MEANS OF FREE FLIGHT TESTS

ABSTRACT

It has been observed, that the behavior of missiles either
moving under the influence of non-linear forces and moments or flying'
at large anglés of yQW‘is frequently well described by curves of the
same form as those generated by linear force systems and small angles
of yaw. With this in mind an "equivalent” linear solution to the
actual equations of yawing motion is obtained.

This equivalent linear solution has been used in the analysis
of a wide variety of programs fired on BRL's Spark Ranges and considerable
success has been experienced. Excellent internal consistency has
been observed in measurlng non-linear normal and Magnus forces and
their moments and, in all cases where wind tunnel results were available,

they were in good agreement with range results.

The application of this technique to the equally important problem
of predicting yawing motion is described.



TABLE OF SYMBOLS*

A axial moment of inertia
2 2
a, coefficients in the drag equation (Equation (22))
B | transverse moment of inertia
b= K10 %20
d diameter
€ Ez, E; unit vectors along axes of fixed-plane co-ordinates
7 = (Fl; Fy» F5) aerodynamic force vector
FD drag force
FL 1lft force
acceleration due to gravity
i -2
H = EJL}- Iy + ky (JH - EJMA)
p q
: 52
I,(p = \ & dr dq
i ' o Q
31
- pa:
Ji - m 1?1
L 2k
Ky = K 5, 8 ;1=4,D, DA, F, H, L, M, MA, N, NA, S, T
: 3 .

k=20

: 2
(Expansion as a function of & of aerodynamic coefficients

defined in Equations (5 - 10))

M :
Only those symbqls which appear in the body of this report are
listed here. Symbols which are introduced in the appendices appear
close to their definitions.
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- a p
Ky © .4 =1, 2 amplituds of i-th frequency

i1 = 1,2 mid-range amplitude of i-th frequency (p = 0).

axial spin deceleration coefficients .

drag coefficient

axial drag coefficient

Magnus force coefficient

moment coefficient due to cross angular veloclity

lift force coefficient due to ysw

overturning (or righting) moment.coefficient due to yaw
moment coefficlent due to cross acceleration

normal force coefficient due to yaw

normal force coefficient due to cross acceleration

normal force cosefficient due to cross angular velocity

Magnus moment coefficient

I

axial radius of gyration in calibers

&
ro

transverse radius of gyration in calibers

cosine of total yaw angle

oD B -
o Ekj:* 2k
£k2 JM = E EMEk & = M ok B
k=0 k=20



B

(M, , Mé, M5) aerodynamic moment vector
|
mass
n§) direction cosines of missile's axis with respect to
range co-ordinates

£ _
_{ % dt arclength along the trajectory in calibers
o ‘

constants in the swerve equations (Equations (82 -8%))

change, in center of mass location measured in calibers (Eqs.:

(99 -100))
) o
_ -2 * Pk
£(J. - k J) = . B
L 1 1 T > %k
time

(ul, Uy u3) velocity vector
|73| magnitude of the velccity
magnitﬁde of the velocity at mid-range

x vectoriin the range co-ordinate system

5
y3) vectorjin the fixed-plane co-ordinate system

exponential damping coefficient of i-frequency

)/’X magnitude of the sine of the total yaw engle

| 2 2.
o 2 Ko Byt - Ky
K +1K +
10 20 bt g
1 2
X 2 +12K 2 > ‘Effective squafed
1Q 20 yavs
2 . 2
K20 + EKlO P
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orientation angle of plane of yaw
u, + iu

A,y + 1Ak, = 2 5 complex yaw

2 5_‘ L P y

(w2 + im5)d o

Mo AfiuB = " dimensionless complex cross angular

velocity

mld _

- dimensionless missile spin

A

i

Q.4

- dimensionless co-ordinate system spin

alr density

8,0 *+ ' p phase angle of i-frequency

¢1‘| = - ¢2|

Pro - &=~ fy

arccos.n5

(Ql, 055 95) angular velocity vector of co-ordinate system
(ml, Wsy mé) angular velocity vector of missile

)

S ()

circumflex superscript with the exceptioh of ¥ denotes

quantities in the fixed-plane co-ordinate system

tilde superscript with the exception of 52 denotes quantlties
appearing in the solution of the linearized yaw equation

asterisk denotes the modification of quantities involving
aerodynamic coefficients through the consideration of the

cogsine of the yaw angle, £.






1. INTRODUCTION |

The free flight spark range technique measures the aerodynamlc
forces and moments acting on a missile by means of very accurate
obeeryations of its motion in flight, This process requires a
knowledge of the funetional]dependence of these forces and moments
- on the dyhamic variables of the motion in order that the solution
curVes to the Qiffefentiel equetions of motion may be obtained.
These solution curves are fitted to the motion and the forces

and moments calculated from the persmeters of the fita

This need for solutiorein closed form hae traditionally

' "limited range tests to motions which are described by lineer eqpetione.
Since non-linear terms arise from both the size of the motion (non-
linear 3eometryHterms) and the presence of eecond_order or higher
I ‘terme in the aerodynamic foree expansion (non-lineaer force terme),“
thie means that the range technique is restricted to configurations

. possessing linear force systems and flying at smell angles of yaw. -

Strengely enough, & number of models have been fired in the HRL

, Ranges which either possessed known non-linearities in their ferce :
‘eylteme or flew at large angles of yew end it was found that their ‘
motion could be very well fitted by functione which were solutions -

- of the linearized equations. Thie seemed to imply that the parameters“
of these linear equations' should be "average values" of the

" coefficients of the parent non-linear equation It is the purpose

of this report flrst to derive the equatione which relate these

average values to the non- linear force terms and certain characteristics.
. 0of the motion and then to demonstrate the‘great value of these
relations by applying them to a numbef of.progfame which have been:
fired at BRL. The success of this technique more than doubles the
values of free flight ranges for both the ballist101an and the
aerodynamicist ‘

Finally the extension of this method to the even more lmportant
problem of the prediction of yawing motion is_described.



2. _ 3 DYNAMIC CONSIDERATIONS

Tn order to inves t1gate the yawlng motion of missiles moving at
large angles of yaw, the exact equatlons of motion must be derived.
An important feature of this derivatlon lies in the proper selection
of the co-ordinate sysﬁam and the dynamic variables. This selection
should be made s0 thatjthe resulting eguations are as simple as
possible and reasonablf compatible with the basic assumption that thelr
solution may be approximated by a solution of the linearized equationsa.
In other words the non-linear equation must possess the same general |
characteristics of the linearized equation, i.e., order of equatlons,

‘number of variables, symmetry of vafiables, ata,

For arbitrary rigid bodieg the best co- ordinate system ls one
whose axes lie along the body's prineipal axes of inertia, Slnce the

mass distributlons of moat missiles are rotationally symmetrical about

are assume.l to he equal and all axes perpendlcular to the 10ng1tudinal
exis are principal axes of in&rtluw A right-handed Cartegian co-ordinate
system with numbered axes will be constrained se that its l-axis is

aligned with the missile's longitudinal exis and polnting forwerd.
Q , the angular velocilty vector of the co-ordinate system

reletive to an inertial system, will have components (Ql, 92, 95)
while the missile's angular veloclty vector, 3,'will have components
(wl, Wy mi)' This definition of the co-ordinate system, then, requires

that 92 = W, and Q = m5 I Q 1 and an initlal orientation of the 2~
“axis are upeuifled thé co-ordinate system would be completely determined

- In Appendix A the equaﬂLonu of' motlon are derilved for arbltrary wvalues

of Ql and we see that these equations would be greatly simplified if
‘ |
Ql = 0, TFor this reason we will make considerable use of a non-spinning
|
co-ordinate system for which the 2-axis 1nitlally lies in the horizontal

plane pointing to the ﬁeft and whose axial spin, { is 1dentically zero,
| .
Turning now to the question of dependent variables 1t may be seen

ll

that the major contendérs are the Eulerian angles and the direction \
coslnes. The questioﬂ of compatability now appears. Although the
linearized equations 1ﬂ terms of Eulerian angles are symmetric in the

\ S

10



‘ components of yaw, the corresponding exact equatione cannot be.
This is clear from the definition of the angles. For this reason*

we will express our equations in terms of direction cosines.

At this point we must precisely define our variablﬁs. The yaw
angle 1s defined to be the angle between the missile's axlis and the
tangent to its trajectory. If the missile's velocity vector, t,

_ has cqﬁponents (ul, Uy, u3) and magnifude, u, the sine of the yaw

2 + u3 , ' : L
angle is — end & unit vector lying in the plane of yaw has
. u2 'l..l.5 _ _ ‘ ;
direction cosines (O, , )+ S8ince we will
- [me——— Iz 2 _

" conpifer only those missiles possessing trigonal or greater rotational

symmetry, it will be convenlent to represent quantities in the plane

‘normal to the missile!s axis by camplex numbers. With this in mind
" we define the complex yaw vector, A, %0 be a vector which lies in the

» plene of yaw and whose magnitude is the sine*¥*of the yaw angle.

2 u2‘+‘iu5 ' _

" The cosine of the yaw angle will be needed in this report and will be

denoted by £.

P | ' (2)

As can be seen from an examination of Reference 1 the Eulerian
angles also introduce considerable algebraic complexity.

*k

In Reference 2, u, is used as a characteristic velocity for forming

dimensionless quantities and, hence, the camplex yaw of that re-
ference is proportional to the tangent of the yaw angle. Although
this use‘oflul does simplify the center of mass relations, it alsc

introduces a number of complications whick our choice of u avolds. .



In a similar fashion the axial. and transverse componente of the angular
'velocity may - be separated and Written in complex form.

(mé.} im3)d ;" ‘_““ R R -’,(3)_

where 4 is diameter.

“Finally ve will eeleot our independent variable to be distance meaaured
along ‘the tradectory in.calibere,_ If this varisble is identified by p,‘

P = “E‘d? N A Y

1
1

where t is time."

5

The generalized lineer expeneion of thc aerodynemio force and
'moment assumes that the- force and ‘moment are linear functione of X, p,

o

and their derivativee in a non-rolling co-ordinate eyatem. For eymmetric
:;mieailee thie aesumption introducee eighteen coefficiente. "If we limit
‘_ouraelves to only thoae coefficiente having & measurable effect on the
motion, ihis total reduoee to ten and we have the following expansion.
22

meeeding, - R A
F2‘+\1F3=pd2u2[ KN+ivKFx+iKBu-KNAk +i°)~):|(\)‘
"le' - pdju2 VK, o ‘w ""‘l i o 7 (' |

My 1M, ‘ d I:( ivKi - iKM x - Kﬁp -iKMA(x + rbx)j]
where (Fl, FE’ Fg) are componente of the aerodynamic force,'

"(Ml, M5 M‘) are components of the aerodynamic moment,

p is air deneity,
B2 and
. i’ .
X are dimensionless aerodynamic coefficients,
| _ )
roa
M o= 3

|
| |
| 12
| :




For this feport we will only consider non-linearities caused

b

mmetry equ

by the size of the yaw angl Since s res tha

ir
eerodynamic coefficients must be functions of xx 62,‘we will only

consider such a dependency on the square of the sine of the yew'angle.

Two other force coefficients will be used in this report. These .

‘: are based on a resolution of the aerodynamic force in the plane of yaw

into components along the trajectory and perpendicular vo it. If FD

is the component along the trejecuory and F the component perpendicular

to the trajeetory and pointing toward the missile § nose,

P

™
L

F, = - pd2u2 K 8 (10)

2 2 .
.- pdu KD. ) (9)

where & = Vxx (6 is the magnitude of the slne of the yaw angle, )-

In order to obtain relations between these two new ooefficients

- and those defined in Equations (5 - 6), we require that the E-axis

“be in the plane of yaw so that A is real and equal to -8,

Fp= AF =5 F2 | | (11()
R 5F + E;FE | (12)
F
2
w\!‘.g_
arcsin o °
Substituting Equations (5), (6), (9), and (10) in Equations (11) (12)

and neglecting the K and K, terms.



iy = By + 8% iy (13)
Mg = My -y \ (14)

From Equations (13) (14) the usual small yaw approximations
follow: ' |

K = KN - Ky, | ' (16)

‘Finally if K, 18 eliminated from Equations (13-14) the following useful
‘relation results:

K, = KN.-%KD | (17)

In Appendix A, the exact equations of motion for the aerodynamic \
force end moment as defined by Equations (5 - 8) are derived. (Egs,
(A3, AlO, A19)) If the ef fect of gravity and the varietion of spin are
neglected (J =y =D=0) they may be written in the following form
in the non-spinning co-ordinate system (9 = 0)

w' o= - g | .‘ - | | (18)
wi=0 o o (29)
A" + |H - %ﬁ‘- i?]_x' + [} M+ JJL‘ - 17%} A=0 (20)

where
2
B T (Jg = £ 3yy)
v é-% v
T s
M= Ekg JM |
|
\
[

. . =2
T = z(JL - k; mr)
A 1s axial moment of inertis
o o
" B 18 transverse moment of inertia
\ :

ki is‘axial radius of?

k, 18 transverse radius of gyration in calibers
! . |
‘ 1

gyration in calibers

| o
i 14

| :

|

|




_ pd
e K
mn is mass.

3, . SMALL YAWING MOTTON WITH NON-LINEAR MOMENT AND NO
: DAMPING

In this section a very simple exsmple of noh-linear'yawing motion
wlll be coﬁsidered in some detail. This is the'cdsé of a missile’
flying at small yaw and acted on by a cuble overturning cr restoring
moment. Later the effect of other non-linear forces and moments,és

well as the geometric non-linearities will be considefed.

The basic feature of all the theoreficdl results of thils report
1s the assumption that over "small" sections of & missile's trajéctory
the non—liﬁeafities ﬁresent in the equations of motion do not cause |
the motion to be qualitatlively different‘ffom motion based on the
linearized equations. For example, the yawing motion of a symmetric
miselle acted on by non-linear forces and moments should still be -
'épiéyclic when a "small" portion of the trajectory is cdnsidered, The
parameters of the“epicYcleb’howeverb would probavly be related to the
size of the motion. This assumption seems to be reasonable when the
non-linearities are themselves "smell". The experience of _
ballisticians as based on actual free flight tests have indicatéd that
relatively long sections of trajectories and large ron-linearities are

still "smali" enough for this assumption.

In order to illustrate this point the data aﬁalysis of a non-
linear drag force will be outlined. Since this ls the only non-linear
aerodynamic forcz which up to the present time has been successfully
handled by ballisticians, this digression will also provide a good

background for later derivations.

The non-linear dependence of the drag force on the magnitude of
the yaw 18 very well described by the assumption that the drag coefficient
ig a quadratic function of & where & 1is the sine of the total yav angle.

UK. =K. 4K .8 | | (21)
p = “p, p2®



In.Reference 5 it is shown that the usual drag reduction for flat

trajectories* 1nvolves the fitting of the time measurements to a
cubic in distance.

2 | |
t=ay+a p+ra,p + 8z pj : (22)

|
I
|

where p is measured from the middle of the observed tralectory. _
It is further showm there that under‘certain:reaeonable approximations
the following equétion applies for drag force of the same form as
Equation (21). |
d - .3 4
t =t +__p+...._ B otayp +=J. 5 I, (p)  (23)
0 Uy U Do 2 3 qo. D62 .l _

where u, is velocity at midrange (p = 0),

-

8 16 & constant related to drag dependence on Mach number,

iy 2
@)=\, 56 ar dq, and
3 ‘
iy
s
T 19
‘ ' . .

If the yaw is well gescribed By an epicycle, then
o ‘ Bt 1

71 e o (24 )
A= Kl.q + Ké e | ‘ | - ‘ _ . |
. C - qu
where KJ = KJO e Y3 ¢J = ¢j® + ¢J'p, and
K o tf are real constants

| e, - dyy  1ld, - 8))
52=XA=K2+K2+KK2(E:'1 2+e-'% _l)(25)
Although the expression in parentheses may be given more simply by -

2 cos(¢i:-‘¢2), this form will be more convenient for the non-linear
yaw equation. For| the case of Zero yaw drag coefficient, we see, from

Equations (22) and| (23),. that
| 2a,
| m

K. =K. . = —= —< : (26)
D IID; | pd5 &l _ _ ‘ -

Ena
A_trajectory is sald to be flat when the component of the gravational
foree along thertraJectory' doed not change.. The yaw drag treatment may
be extended to treat non-flat trajectories if this is necessary.

| . .



When the yew-drag coefficient has a measurable effect, it does not
usually affect the quality of this cubic fit for segments of trajectorles
a8 long as lO 000 calibers. It has been found thet in this case the:

same configuration flying at different average yaws will provide good
2a,
cubic fits but differe:;:t value: of '—ag . The problem is then to find
1 _

the quadrastic contribution of the yaw-drag term of Equation (25).

Since all drag reductions contain a number of periods of the
cosine term, the cubic fit of the time history effectively neglects
this component of 2. With this in mind we lock for the "pest" quadratic

approximation to 1 (p) over the length of observed trajectory, L.
,-../

To do this we define an average squared yaw, 5~ » 80 that the integral

L
2
2 e
- (~—) dp is & minimum.* ‘62 ie, therefore, the best
L

quadratic coefficient from the standpoint of least aquares. Differentiating
the integral with respect to & and setting the result equal to zero.

) dap

Tt
b

|
1

| pol et 7 ol
o
o
H
e
-

| (3 )b ap

r
b 7l

* Note that this average séuared yaw is different from the more‘tradibion—

ally used me ) dp. Although the average

équared yaw has better theoretical Justification, the numerical difference
is usually not important.:



= 'éLﬁ J[ﬁ p° Il(p) dp (@)
L .

D
: 2 2
where_Il(p) =S § (Kl + K, ) dr dgq
oy

o © - l + aalp | ale - 1+ aaep

+ K
(20 ) (2, )

K

10 . 20

‘ The complete expaneion for 5& may be computed from the power series -
~ expansion of I (p) Since tHr e non-zero terms are usually sufficient,
the following expression for 8 is easily derivable. ‘

N X6 | (ch) | (c:zL))+
2 2 1 'y
0 '1‘{“10 [ﬂlﬂ) *~718T) * T J (e
' o ‘1 (am (QEL) | .

*20 | 5T2T) ¥ Tyt T97ET)
Returning to equation (26),h |

o ' | Ea .‘- ' : |
R bRl PR | (28)

range pd‘

In most cages a good approximation for BR can be obtalned by taking‘
‘the first term in the expansion of Eg. (277).
2

2 .
. = Kpo + a (K. + Ko ) - (29)
range ; - ‘

|
The wvalue of this Ielaf*on is clearly shown in Figure 1 where
. is plotted versus 5° for a body of revolution fired at yaw
anging up to 50 }A further check on this technique lies in the
good agreement of ohe wind tunnel value of KD 5 = 1.85 with the free

|

|
flight value of 1.82. (See Table IV on Page 45.)

\

|

|

i ‘

18
|




Free flight_tests6'have shown that the situation for the yawing

~motion is quite similer to this yaw drag case. Although the non-

linearities do not measureably chenge the nature of the epicyclic
motion which is predicted by the linear theory, they do affect the

values of the epicyclic parsmeters. It is, therefofe, necessary

. to obtain relations of the seme type as Eq. (29).

Since thersimpie casgse of the small amplitude y&wing motion of &
missiie_acted oﬁ by a'cubic étatic-moment will first be considered,:
Equation (20) cen be considerably simplified. The small emplitude
assumption implies the approximations £ = 1 and £' = O while the
restriction to a static moment eliminates the tErms in H, Ji and T.

The equation under consideration, therefore, becomes

A - i?x' - (MO' +M2 a?)x= o - (30) |

The solution to the linearized form of Equation_(BO) for a .

gyroscopically stable missile* is an epicycle without demping.

~
A= KlO e + KEO e . | ( 31 )

* A missile is gyroscopically stable if v 2I>h$b. All statically stable

missiles (M,<0Q), for example, are gyroscopically stable. Statically
unstable missiles,(Nb:>O) are gyroscoplcally stable when their

gyroscopic stabillty factors, s = , are greater than unity.

;1<l
o:g ro

19



K ET aﬁd‘aﬁ are real conétants
iQ’ 710’ 1 : °

In Equation (31) the K, and s depend on the initial conditions but

i0 io

the frequencies, ¢ are functions fo the coefficients of the linearized .

equation and are independent‘of the initial conditions. The well known

relations for the frequencies are

A ” g ()
(AR S - | ()

It will be shown, ho&ever, that the frequencies of the quasiflinear
solution of Equatipn1(30) do depend on the initial conditions.

If the solution to Equation (30) is assumed to be of the same
form as Equation'(ﬁlj,-it can be substitufed in Equation'(50) to
provide the following equation

i | 5]
L 12 -t 2
Ko © lL‘¢1 V- M- M, (K102 + 2K )
}, —
' ig.r , _
+ Ky € QL_ é¢;22 + ?'_¢é - My - M, (1(202 + 21{102)-1 (34)

o i(2d, - 8,) i(28, - @)
‘Mz[lo eoe ' 2+K10K202‘”“ ° l:l=o'

. t
* The tilde superscripts are used to emphasize that the ag 8 appear
in the solution to the linearized equation.

20




Since we know that the epicycle is a good description of the actual
' motion, the third term in Equation (3k) vhich contains mixed freqnencies
is néglected'and the following two eqnations may be obtained.

6 (5 - #) = my +my | ' (35)

=
Y]
~
<l
1
=
n
I

) 2 ' ! “
My o+ My B, S _ (36)
L 2 .2 2
where Bel = KlO + 2K20

2 _gx 2,2

ae2 20r 10

'”lunfortunstely Equations (35 - 36) are both. quedratic equations and two
_differEnt values of each frequency are possible. This difficulty,
"however, can be resolved. Since we are considering solutions close
"to the solution of the linesrized equation, the solution of Equation
. (35) close to’a4 should be selected and similarly for Equation (36).
“This means that the larger root of Equatiou (35) and the smaller root
of Eqnation (36) should be used. o | o
Equations (35 - 36) show that 621, the ‘effective value of the V
‘squsred yaw for. the i-th freqnency, is twice as sensitive to the
‘amplitude of other freqnency as it is to ite own amplitude. The: effect.
cqmes from the cosine term which was omitted from the yaw dfag anslysis.
.'For the yswing motion this periodic part of 82 can not be neglected.

In order to obtain relations similar to Equations (32.- 55),-Nb
- 'is first eliminated between Equations (35 - 36) and then v is eliminated

" between them

o K 2 g 2 |
;'. ¢1 + ¢2 =‘ v + M2 ( 101', ?O ) . (57)
¢l - ¢2
A L A © (389)
2 Vo2
2 ¢1 Bep ~ ¢2 el

21



‘ (38b)
= K 2‘+ K 2

LB K- K
1o *Kpg *IL 10 2 20

’Dl' 92

At first glance this derivation of our "equivalent" solution
seems to be surroﬁnded‘by an atmosphere of expediency and to be
resting on empirieal assumptions. Actually this is not true. As we
shall now show ou# technique has a good theoretical background and
requires a minimuﬁ algebraic work in comparison with other methods.
Finally it will be shown that the technique is not restricted to non-
linearities proportional to. B but can be easily extended to polynemial
functions of 52. | ‘

)

The derivation of Equations (35 - 36) may actuallv be considered
‘the. first etep of an iteration procedure. It is certainly reasonable
to assume for small non-linearitiee that the firet step of the iteration
has the same form. a8 the linear solution. The. error tern,
| RGO
‘g¢1 - 2 2 1

8,) ‘
2!+ K0 Kpg < ,

2 1(
Mo | Ko Xpp ©
introduces mixed freqnencies which are a characterietic of a non-linear
eqpetion. The next step in the iteration wbuld be to assume a solution |
of the form - - |
1f 1 | i(2¢ -¢) i, -'8)
-1 Ed e 2 +'K30 e 102 + Khﬁ'e ‘ e X

- | (39)

Substitutton of Eciuation (39) in Equation (30) would provide four
complicated equatibns in terms.of the four K s and two frequencies

t ‘
¢l 5, and our error term would then be of the form

| 1(38, - - 24,) 1(34, - 26,) 1(up, - 3,) 1(4fh, - 5¢)
Mé A e | + A, e + A5.e \ + A e = )
where the A, are fifth order combinations of the X, .!s. This process

i 10‘
mey then be further iterated to yleld a series expanaion of the almost

‘periodic solution of Equation (30). Fortunately as we shall see, the

0]
<

experimental result

f this report h_w thet only the first step of

this process is needed.
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-angles

Another method of treating Equation (30) which may seem to be more
elegant than the method of this report is that of Kryloff and Bogoliubef;*
It will be shown that this method prqﬁides the seme results as our diréct

P E
LY

s s Tar-Telzn
1

substitution approach and requires more alge
Bbgoliuboff move the non-linear terms to the right-hand side of the:
equation and place the.solution of the linearized equation in these
terms 86 that they are functions of the independent variable'p, The
method of variation of parameters is then used to solve the resultipg _
inhomogeneous linear equation. In order to solve the differential 5

equations for the parametric functions, the terms arising from the

* inhomogeneous term;of_the original equation are averaged over the two"

periods of the motion.

As an illustration of this method we rewrite Equation (30) as

A AVn - M =Y, §? = M, £(p) : (40) .
L .
1 : ~
_ 2 - 1 2 2 ig
where f(p) = (KlO o+ ?KEO )Klo e + (KEO + 2K, o )Keove 2
128, - By) 1(28, - )
K 2 o ATl e et
* %0 ®20 ¢ %20 M0

The parsmeters of this solution are the megnitudes K
' .
8. Differentiating Equation (31) we have

10 and the phase

710

If the last two terms are set equal to zero,
. ~ ~t
oo if,

(Kyo + 1 gyg)e

i¢l t lara)
+.(K20 + i¢20K20)e - O,_ (42)

¥ In Reference 7 it is shown that this method is fundementally the same
as that of Van der Pol. They differ in the fact that Kryloff and
Bogoliuboff express the linear solutlon in polar co-ordinate form

and Van der Pol expresses it in Cartesian form.

N
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| .
then Equatlon (hl ?Xy‘be differenti@%pd again to yield ?Z
i
~h 2 e H
" _ 4
A - ¢l '50 € + j’-al ( + j"alo lo
(43)

+ iaﬂ (Keo + 20 Kogle 7

' .
Substituting Equations (31, 41, 43) for A, A , A" in Equation (L0)

K ~h
and solving for KlO + i¢10 K o by use of Equation (42),
' ~ M, f(p) e

2

10 +i¢1o 0T TA gy
17 %%

K

(Lk)

If the right sidé of Equation (4k4) is now avéraged over & period of
¢2 - ¢l, and thegresult divided into real and imaginary parts,

Ko =0 | , (45)
: : 2 el .
7o K1o * oo . |
10 = % e | (46)
| 2~ "1 - "
By symmetry, %
Koo = O | (46)
| 2 2
,.a/' : M2 K20 + QKlO
20, 7 -7, - (B)

~ Equations (45 - 47) show that the first approximation: to the
solution of Equaﬁion (30) is an epicycle with no damping but with
frequencies whicﬁ differ from those of the solution of the linearized
‘equation. The cprrections to the frequencies are the 10 ® given by

Equations (46) aAd_(hB),

‘ 1K 2 + EK .2

6 =%, - MQ%" ,.520 | (18)

ool




2 2
'¢'—~Er Kéo +—2Klo
2~ "2

+ . 7 (49)
ME_ 131 ']ia | ' N

In order to compare these results with Equations (37 - 38), Equation
(48) and (49) are first added and then multiplied. After making
use of Equations (32) and (33), the following relations may be
obtained. | |

K 2 -k, °

N T e (50)

e "52 . o
.8 T SN A
10 Po =y v M| Ky + Ky 4 T

! %

- | L Gny

- )2 (Ko +2Ka0") (Ko + 2K, %)
"o o x\e
L ) \)Ul ¥ol

But if second order quentities are neglected, Equations (50.-~ 51) are -

the came ag Equatidns (57 - 38). Thus for twice the work we get the
seame result.

As e further basis for our quasi-linearization technique & special

form of Equation (30) will be considered for which an exact solution

is known. This case 1s that of a statically stable non-spinning missile

)

in planar yawing motlon. If A\ 18 replaced by & ei where © is the

orientation angle of the plane of yaw, Equation (30) assumes the form

) o . ,2\,' . PN
8" - (M, + M, 87)8 =0 (52)

where M0<:0. For plenar yawing motion & must go through zero and, hence,

the two amplitudes muet be equal (KlO = Ky =

K). Finally according to

Equation (37) the frequéncies for a non-spinning missile differ only in

t 1 4
sign, (¢1_= -¢2 = @). The quasi-linear solution of Equation (52) is

& special form of an epicycle,

(53)

d, cos (¢lp +'¢O)’
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for which Equation (38) reduces to

2 32 -
e A N (54)
vhere 5 ok, (maximum value of 6)
_
=#10 - ei 8 - fooe

The exsct‘solution of Equation (52) is an elliptic function with '
period deizermined b;y complete elliptic integral of the first ty'pe.‘ 'Thus :
by use of & little }algebrs. and e table of complete elliptic integrals =
it is possible to compare the periods predicted by Equation (5®'w1th
‘I‘the period of the exs.ct solution of Equstion (52). 1In doing this two cases .
must be considered

1. A moment which grows faster than & linear moment (M2<:O)
2 A moment ‘which grows slover than E lineer moment - (M2> 0) a.nd,

therefore, ectually changes sign for- -Igr— = 1.
'Although & quasi-linear approximation may be reasonably good foz\'?/

reasonably large .va;lues of when M, 1is negative, it cer.teinly_

-_"‘ca.nnot be good for ifalues of Tn near unity when M2 is positive. v
. -

With this in ming we ‘may now state the surprising results of this
" comparison with the exact. theOry. For negstive Me's, Equation (82)
- predicts the period with less than 1% error whenever the non- l:l.neaﬁ2 52

moment contribution is less than five times; the linear moment ( I( 5).
‘For positive Mé'e the error will be less than a’ percent when the non-
linear moment, contribution is less than one-half the linear moment
2 o
M, 8 | I |
( MO 5 ) Ih this case the error, however, rises quite'rapid_ly
\
‘ for larger angles. ‘As a result of these facts it is reasonable to meke

use of Equ.s.tions ( 35 - 58) with considerable optimism.
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Turning now to the questlion of more general non-linearities an
examination of the algebra used in Equations (35 - 38) indicates that
any polynomial'function of 62 could be used. In order to obtain |
the effective values of higher powers of §2 we look for those terms

i¢l
in 5°2 which upon multiplication by A yield terms in K, e or
1¢2 . ‘
K.,- & . (Clearly the only terms which have this property are
29 A, - 8) 18, - B,).
constants, , and e In the binomial expansion

of 52n the only term in which these exponentials appear are various.

¢2) i(¢2 - ﬁ'l)

(9, -
" multiples of the cosine, i.e. CKlo 20 [j + e .

Although the constant terme are unaltered in all three forms of effective
yaws, [ﬁaﬁlel’ [§2n o and.wggﬂ] , the cosine term makes different contri-

butione to these forme. For [: :] its Eonpributign {8 CKEOQ’ for [%2%]82
lO ¢l 20 2) '

5 - o

As ean example of this algorithm we calculate the three effective

)
1t 1s_cxlo , and for [; o itiscC (

forms of Bh

Fram Equation (25),

' 2
- 1 -
Bh’E*b(:(% h) 1, ¢1>)] s
where a = Klo2 + K202
b =K g%

The exponential form of the cosine allows an easy selection of the
constant and cosine terms of the expansion. These pafticular terms of
the expansion will be identified by brackets on 54

[;K] = a + 2b + 2a [j t] . (56)
where[ ] ¢ i( l ) |

- L 2
In order to obtain .[-%] o1’ [:%] s OF [j]e’ Koo » Klog’ or
r !
K102 Py - K202 %
- 7 ¢, respectively should be inserted in the empty brackets of

‘Equatioh (56).

2



‘a2 + 2b2 + 2a

o
=
i
=L
Sy
1)
-

[ _Jel 20
_5)4-— -‘52.-6- 2102 + 2a :1; 2] (56)
| © Je2 ™ 20 | >
. = g 2
; K.~ 8, - Ky 8,
g% | —a® 4 o2 4pa |10 L7720 72

- o | -8

In Table T valu?s of BEn are given for all values of n‘between

one and eight.

b GEOMETRIC NON-LINEARTTIES OF LARGE YAWING MOTTION

The basic qnantities measured in free flight are the co-ordinates
of missile's center of mass and the direction cosines of ite axis of
symmetry. Since the usual fOrmulas relating the direction cosines

" the motion of +hé o]

yaws, the exact relations have to be derived for this report. In this
derivation we will find it convenient to keep the 2-axis in the horizontal
plene (fixed-plane co-ordinates). Uhfortunatmly these co-ordinates are
not the seme as the nonnrolling co-ordinates (¥ = 0) and 1t is, therefore,
necessary to calculate v for these co—ordinates. Surpriaingly enough in

' Reference 8 it is shown that not only 1s v finite but it has a non-zére
average value. In our development the cumbersqme Fulerien angles of that
report will not be used‘and the desired results will be obbained in a

somewhat simpler fashion.

Co-ordinates in the free flight range system will be idéntified by
(xl, X5 xj) and in-tpe fixed-plane system by‘(jl, Ya» y5).‘ The range
system has a l-axis pbinted downrange along the intersection of
horizontal plane and tertical plane containing the gun. The 2-axis lies
in the horizontel plane pointing to the left end the 3-axis up. The

fixed~plane CO—ordinates have the l-axis along the missile's axis, the
2-axis in the horizontal plane pointing to the right, and the 3-axis

dowvn., Finally the.non-spinning co-ordinates, which are our fundamental
co-ordinates in the tﬁeory, have the l-axis along the missile'¢ axis,

the 2-axis initially" pointing to the right in the horizontal plane

Tnand wemwrd oy v drle e ﬁ
DUL mMOVIing s0 Taav v

\
ig zero and the 3-axls fixed by the right-hand
I
| .
|

\
| 08



_H %wa_,mmm + %mmo» + AT+ JB)8 w.mpﬁ + modmomm * :ﬁ%%¢ + mp%@m *g®
_H n‘—nwn,m + :o,w.mom + mm,:mm.ﬁ + w‘mvh + @ormoi.m + :_o,m.mo.mm + mpmmmﬁ * )3

—H gﬁ 4%3 + mpmmoa + mmvw + mpom_ + %Nmomymﬁ B¢ +_ @m

_” HT:nm_ +.Nn_mmo + :mvm + :pﬁom + ,A.208 + &

_“ H_Ampwm +.m£: t Lo J0B2T + . ®

ﬁ Q@N + NQ.N + N,m

| ﬁ .H_+ .

I gV

i
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In order to calculate the complex yaw it is ne'cessary to know the

components in the range system of the unit vectors, e 4 3 along the

y e R e
fixed-plene axes. Slnce the fixed plane- 1-axis lies ilong the missile'

axls of symmetry, components of the unit vector é are (n N, Ny, n ) where
the n; are direction cosines of the missile's axis with respect to the ‘
range system. The restriction of the fixed plane 2-axis to the horizontal
plane 1is equivalent to the requirement that the third component, of ?
- be zero. This together with the requirement that it be perpendicular
to the l-axis and pointing to the right completely determine the

- components of the unit vector along the 2-axis.

2
>

c (P, 1oy (61)

_\/ 2, 2 _W/ 2 2
o) ¥, nl R

According to the righ't hand rule, the third unit vector 1s equal to the
cross product of the first two.

2 -2 x'é)‘=(rj.n ‘n n;) x
5 =€ * € = (ny, 0y, 0y

Iil]."l5 1,
» y - + n

N e
By 2‘ ny Ty

With this information 3th«-:n matrix equation fof changing from the range

(62)

coordinates to fixed-plane co-ordinates can ‘now be written:
\

i
! il 0y
|
|

) } By | Bt
2 NE NEE
T 1t
|
|
} n11‘15 n2n3




_ \ﬁ/ | nd simpli

‘If the vector (%, %, 3) 1s inserted on the right side of Equation (65)
the left side would yield the components of the velocity vector in the
fixed-plane co-ordinates. Thege co-ordinates will be denoted by the
pymnols (u,, u2, 3) and the symbols.
reserved_for the non-rolling co~ordinate system.

. A _21 12
T T TS (64)
n,” # n,
n.n,% + n,n%, - (0" +n, )% _
63" 1‘31 27372 1 2’73 (65)
A 2
1 2

( axe\ 2'| 1/2
3 & fying, we can obtain the following expressions

-for the components of the complex yaw in the fixed-plane system:

. 2.
: ~ n, --n, =—— .
AL e iy (66)
2 0 QX 2 X, .2
( 12 + D2 ) 'J]: + (d_x'?') + (_6?53
' 1 1
: dx dx
_ - _ >
. ".\13 ].'lll'l3 + nena(a%) - (n12 + n2. )(-ax—l)
Ay =5 = (67)
5w r—'-"‘”" / dx_ 2 R ‘

(-\/ﬁla-u- n, )-‘/l+ (-_—-—) + (Ex'é)

For the case of a flat trajectory, the derivatives are the same

order of magnitude as n, and n, or smaller and, if we make use of the ‘

2 5
faﬁét’ thiat nl2 =1 - _nge - 1132 , we can. obtain the first order approximé.tion
of the yaw components ' '
: dx,,
Ay =D,y = =—
72 2 dx,
A x5 (68)
=1 = r—
> 5 axy
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Turning now'to the problem of computing the axiel angular vélocity
‘of our fixed-plane co?ordinates, we first must state the definition of
the angulaf velocity &ectorAin terms of unit vectors along these co-
ordinate axes & E;;j?g. : |

7
a; .. VO S
W, . ; - 33 . %l | (69) .
o5 2. 3
or ?=g;§=?". (70)
’ﬁ=(mé:iw (-1 E) (72)

| d
where { )' denotes @

_ Substituting in ?qpation (70) the co-ordinates of the vectors
'EZ and'gg from Equations (61-62) we have

|

n /

4 t - . .
~ ] n n, ony ")
V= ‘ 5
1 - n3 ' 1 - n5 '
? 3 -b/i_» n5
' |
Similarly, | |
A A A S
M=}y +'14 |
2 3 l
/ 1 ¥ 1
P ‘, nytng - nylny
= ] + 1 ( ) (75)
2 | 2
l=-n ; 1-n ‘




c=“ﬁ3(

1/“““‘_" > ()
1l - n5 | ,
'If the angle between the missile's axis and a vertical axis 18

denoted by ¥, then ng = cos V and Equation (74) reduces to

A
v

- ﬁ} cot ¥ (75)

Since ﬁz is the angular velocity of the missile's axis about the 2.axis
which 1s fixed in the horizontal plane, its integrel should be related

‘ A
to ¥. Integrating W, &s given by Equation (73), we see that this 1s true.

P ;
S.-ﬁz dp = arccos n3(p) - 8rccos n3(o) (76)
0

. ‘ A
o s\ -y dp Yy | (17)

o]

Although Equations (75) and (77) are very useful for the numerical
integration of the complete equations of motion, we will find Equation
(72) to be much more caxnvenient for the purposes of this report.

If the flat trajectory approximation Xy = pd is used, a first order
A
approximation of v may now be obtained from Equations (67), (68), and

(72). ' "
SR o
Co=hher . (19)
where T = x_g’;\é . '2{%';»5 . x-BdZE

A good approximation to the yaw components is an epicycle.

A . A
Ay = K cos @l + K, cos ¢2 | (79)
A A A
Ay = K o sin ¢l + Ky sin 5252 (80)
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where KiO are constaﬁts and
A

¢i are linear fUnctions* of p.

A AL | : Mt ’
Mzhy = sin'@ + Ky sin ¢ - Klo'g?i sin 'Bl - K5 ¢2 sin '532)\-
[ . .
1|, 2f 2 At 1 2 N 2 A az
=-3 |Kg P+ Ky %2:' *3 [Klo '531 cos eal t Ky Do
‘ u t A
- (61 + '532)1(10 Ky sin '&51 sin ¢2 | (81)

A :
From Equation (81) it can be seen that v has a non-zero average value

of - & r-" 29! + X 2 A'-1 (Fortunately, for small yaws, this can
T2 M0 Fi TR0 P2 |0 Yy, tor yaws,
be neglected.)

Turning to the sﬁall trajectory term T we consider only the effect of
gravity and 1lift force and obtain the following relatione for constant

velocity u, from Reference 5.

0
' ' '
b 4 ‘ ‘ K K
2 | 10 ~ 20 X
T4 T sin §, + P sin 82] (82)
| 1 2
x' ? {_ K K -]
| 0 2
% ) 2

where Q are small constants** and

g is the acceleration due to gravity

3
J-pd

I K

A 1ittle algebraic manipulation results in the relation that

¥ '
The circumflex on the a 's 1s to indicate that these angles are

messured in the fixed Plane system and not in the non-rolling
system of Section 2,

* \
This is due to the assumption of a flat trajectory.

[

i
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+ fluctuating terms (84)

%

Since for most missiles —EL, ~ 10'6, T 1s effectively the same order

([

as KiolL and we need only consider the fourth order terms which are
independent of the trajectory to obtain a complete fourth order
approximation to the non-fluctuating or "D. C. componeit” of v. This
expression is calculated in Appendix B.* If -we add T to this and define
[?] to be the "D. C. component” of v, we see that

2 .. 2 | 2 2
[5]- - 1 k 2 3 B )+K 28'<1+K20 +2K10_]
-T2 10 1 L 20 2 in
2 2
K K
1, -2 %o 20 -
S @) 3P G 22 e (8)
3 ()
1 2

With these results we can now calculate elther the exact position
or the average position of 2 and 3-axes of the non-rolling co-ordinates.
Since our fixed plane co-ordinates are turning at an engular velocity of

9 with respect to the non-rolling co-ordinates, we have that

P
if Y dp
r=2e ° (86)

A A
As it shall be shown later, v, in Equation (86) may be replaced.by‘lv] for
the data reduction of large yaw firings.

The effect of large yawlng motio 1 2 manifegta it

8 on the results of Section

self in two ways. TFirst the distinction between the non-spinning co-ordinates
and the fixed-plane co-ordinates becomes important. According to FEquations

(85-86) these co-ordinate systems rotate with respect to each other with a non-z

* In Appendix B the frequency for pure precession is compared with the
approximate relation based on this expression for [?J . As can be seen
in Fig. 15, the agreement is good for & = sin 45°.
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' Ny
average[é] . If 81 and ¢2 denote the epicycle frequencies for the

range fixed-plane co-ordinates, it can be seen from Equations (85) and

(86) and the assumption that the motion in fixed plane coordinates is
also epicyclic that*

v [ Al A B ' 1
=81 HLv]e 81 - —é- Klo%l + Kgozaéil (87)
-t [5To % B B )

The second effect which is the appearance of the cosine of the yaw angle,
may be seen in the equation: of undamped yawing motion in the non-rolling
system. This may be obtained from Equation (20) as

' _ 1 : : .
L (é +1v)A - MA =0 ' (89)
-2 L% 2
where M = £ k2 JM = Mb + Mé B
-2
M. =k dJ.
0 2 MO-
* 1 2 1,
Mo =My -5 M =Ky (Jmae -3 ‘JMO)

. H :
‘ [
Equation (89) differs from Equation (30) by the é ‘A term and the presence

of the cosine term in M. In order to obtaln the'correct form of Equations

(37-38) we must derivei a good approximation to é .

'_ 241 |
3 {5

i

Y
z

) | ~(90)

®
For rapidly spinning nodels ap igh yaw Equation (88) can impose a
large correction on ¢é' Ir = L0 and K > .23, ¢ become s negative

and the product of th? rates in the non- rolling system would be negative.

{ 36
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- 4 -

/
. 1 2
= - (3) (87)
Inserting Equation (25) in Equation (90) we have

' , ., g -8) ,
é =~ %‘Klo Koo (B - Fp) e voE -

Substituting Equation (91) in Equation (89), and operating on Equation
(89) in the seme way as we treated Equation (30), the fg%lowing twoi¢

requations may be obtained from the coefficients of KlOe 1 and KEOé 2
respectively ¢
1o * 2. 2
¢l - V¢l + Mo + MQ 631 +K '“ ¢ ¢ )( =0 (92)
'
4'2 Td! , K 2,1 \I¢l\ o~ -\
)02 - V)U2 - 1"1 + 1"12 O UUE = Pl)\—'gl =V 2)

Eliminating first Mg and then v between Equations (92) and (93),

, ‘ : . K 2 - X 2
¢l+¢2+§[ °8, +K2°¢2_J = VM () (9W)

¢1 - ¢2

2 'é 2'-2 : )
Kig )" *Kpp B | =M, + M, B, (95)

=
o -
RSN
-
-+

ol

Thus the geometric non—linearity of Equation (89) introduce correction

)
terms t0 the left sides of Equations (37 - 38) of the previous section
*
and replaces Melby_M2 = M2 - % M, in those egua

in Equations (9% - 95) are replaced by their fixed plane values from

Equation (87 - 88), and fourth powers of K, .'s are neglected, Equations

iG¢
(9% ~ 95) may be written in the followlng useful form.
1 An 1 DAL gljl -‘ * Kloe - Kgoe
a1 +P -5 o al * %a0 aé = vy T ) (96)
- . 1 "2
-
] A 1 D x
81 P11 - 5 (K0 N o= My My 0 (97)
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An examination of Equation (97) shows that the effect of a large

percentage change in the frequencies implied by Equations (87 - 88) is
almost completely gancelled when the terms in the cosine of yaw are
properly handled. As a check on the derivation of Equations (96 - 97) they:
are derived in Appendix C directly from the yaw equation expressed |
in the fixed-plane system. This derivation shows that the assumption
implied in Equations (87 - 88) is equivalent to the basic assumption
underlying this whole report.

5, 3 EXPERIMENTAL RESULTS

In Secfion'5, a;very simple example of non-linear yawing metioh with
two degrees of freedem 1s considered in great deteil. The very same
quasi-linear assumption mey be applied to a much more complicated system.
In,appendices D and ﬁ the yawing and swerving motion of a missile for
which all aerodynemic coefficients are quadratic functions of & is
considered. Equatiode relating the parameters of the epicycle
approximation (frequencies and damping exponents) to the coefficients
of,fhe parent non-linear equation and the emplitudes of both modes are
derived, Since theee relations are essentially approximetions, their

value must be determined by either numerical or experimentsl checks.

A good check on?these approximations can be obtained by means of
the actual free fligﬁt motion of a missile acted on by non-linear forces

and moments. For thfs reason various results of firing tests on BRL's

9

spark rangea” were exemined for poseible verification of the quasl-linear

hypothesis. The resuits of this investigation were quite encouraging.
i

The effect of a hubic static moment on three different programs was

first considered. Th%se programs were a finned missile program (81mm

mortarslo), a body of revolution program (Army-Navy Spinner Rocket

program.)a and a large yaw body of revolution program firéd by E.
13

Roecker.

In the finned missile program a free flight range value of KM was
computed from the product of the frequencies. According to Equation

(38a) and the definitions of M,
- pd _ 2
"E Ky K % (98)

*

range
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Thus the range value of KM’ as obtained from an epicycle fit of
individual rounds, should be a linear function of the corresponding
effective squared yaws. In Figure 2 the range values of KM are
plotted against 682 and different lines for each configuration tested
are drawn through corresponding points.* The linearity exhiblted by
these experimental points constituﬁes the first check of the theory.

Tt should be emphasized that in all cases, eplcycles with damplng
were Titted to the date and although the exponentislly varying Ki's ‘
actually should have appeared in the calculation of 5e2 they were
approximated by thelr midrange values Kio's. The approximation 1s
implied by our basic quasi-linear assumption.

The Army-Navy Spinner Rocket program consisted of three model
lengthé each with three different center of mass positions and fired

at three Mach numbers. A meximum of twenty-seven values of KM p Was
' B

therefore possible. Since for each case at least four points with a

reasonable spread in 5e2 are necessary for a good determination of KMBE,

1t was actually possible to obtain only sixteen values from & careful

analysis of the 126 record rounds of the program.

These values with thelr standard errors are 1isted in Table II.
A sample plot of the experimental points for the 9-caliber model at
Mach number of 1.8 is given in Figure 3.

For some of the Mach numbers and configurations, wind tunnel data
taken by R. Krieger were available. The data for the overturning
moment were fitted by cublcs and the cuble coefficients.( 2) are
listed in Table II. At all seven points of comparison the “agreement

is good.
*
" 8ince these finned mlssiles were not spinning, ¢i = - ¢é and. the
effective squared yaw assumes the concise form-g (K102 + KEOE')
In Reference 10, the K 's were efroneously plotted against
L range ‘
2 . 2 e : ;
& = KlO + KEO and, hence, the slopes obtained in that report are
actually 5 KM -

B
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TABLE, II

KM o FOR THE ARMY-NAVY SPINNER RQCKET

o}
Mach Forward Middle Rear
Number Center of Mass Center of Mass Center of Mass
Range | Wind Range Wind . Range Wind
- Tunnel Tunnel _ Tunnel
; Five Caliber Long Models
1.3 _ -2 - 3+1 0 l1+2 3
1.8 -1k - 7 3+1 0
‘ Seven Callber Long Models
1.3 -21 +1 S - .54+1 T + 2 5
1.8 -12+1 -11 -3 0+3 5
2.5 ~ 28 +1 ‘=26 - 11
Nine Caliber Long Models
lu8 -30_":’4' -161"1 507'_.'-3
2.5 = 30.+ 2 =1 +.6
¥

The center of mass for these RCM models is .2 cal. rear of its
usual location. |

|
I
|
i
|
!
|

Lo




Since models with three different center of mass locations were
fired, a second check is possible. If the normal force is expanded
as a cubic function of B, the usual center of mass relations provide
that

Ky (@) = Ky, * 1Ky (99)

0

K‘MBE(q) = Kyo * 4 K2 (100)
where KM (q) are the moment coefficients for a center of mass located q

calibers rear of the center of mass for the KM 's.
i

This means that the KM and. KM 2'5 for different center of mass
' 0 5]

locations are linear functions of location. It was possible to measure

three values of KMBE’ for only one configuration and one Mach number.

In Figure 4 both and for this case, are plotted agalnst center
0 52

of mese locatlon. The fact that the cubic coefficlents as well as the

linear coefficients fall on & stralght line is enother point in favour

of the theory. The slopes of these lines are KN o and KN respectively.
5 0]

Por six other cases 1t was possible to compute KN > from two values
of KM 5 and all seven values together with the corresp%nding linear

8 ‘
values (KN ) are tabulated in Table III. Once again Krieger's wind

0
tunnel datae were analysed and it was found that at all points of

comparison the wind tunnel results were in good agreement with center

of mass values.

In Appendix D, it is shown that the lift force and Magnus force
coefficients may be directly measured from the swerving motion when it is

large enough. According to this appendix, most of the swerve is associ-

LT Y E‘J’ld 2



TABLE ITI

Mach Ky _ Ky 2

Number -0 _ 8

Center Swerve Wind Center Swerve Wind
of Mass ] Tunnel of Mass : Tunnel

Five Caliber Models

P

|
[
1.3 .98 .99 .92 T 5.2+ .2 5
1.8 1.13 11.13 1.10 -- | 0 %2 7
|
| Seven Caliber Models
W3 1.02 .98 -- 20 10 +1 --
.8 1.13 '1.13 1.08 12 ‘ 9 U 10
5 1.21 '1.20 1.21 18 | 27 +h 18
| Nine Calibef'Mbdels
1.8 1.14 '1.23 _ C b2 + 4 15 +2
2.5 1.31 1.20 3k 30 +2

| 42




In order td calculate KN from K 1t 1is necessary to expand

52 L52’
i +4 (17Y 1 + 32 4 vy e afPPinianta

R, am

| 1 o - :
i TR - A % | (102).
Using these relations it was possible to calculate eight values of
both‘KN and'KN 2'from-the-swerving motion and these are given in Table
0 o} ‘

ITT. Withlthe exception of two values of Kﬁ 5 for the T-caliber models .
. R Ns2 © )

»the agreement is remarkable. The reason for these two discrepancies

is 8t present unknown.

Although the lateral displacement due to Magnus force‘ia aboyt one
‘tenth that due to 1ift, it was possible to make two meagurements of
VKF 5+ The éxperimental points fof these two cases are given in Figure 6.
Thg'excellent internal sgreement of these quite delicate measurements

is‘extremely gratifying.

Finally in Roecker's large yaw program it was possible to check the

treatment for the geometric non-linearities. Tn Figure 7 KM , 88
range

calculated from Equation (97), is plotted against 6_2. Here we see
. 1=

that the data is essentially bilinear. FEach line corresponds to a
cubic segment in the moment plane. If the parameters of each cubic
are calculated frdm the slope and intercept of its cofrespondihg line
in the KM - 662 plane, they can be pieced together to form a smooth
moment plot, (Figure 8). (An examination of the spark shadowgraphs
revealed the fact that flow separation occurs at gbout 21° and this
explains the sudden change in the moment curve at this point.) In.
Figure 9, KL is plotted versus 8822 and the corresponding 1ift force
plot 1s given in Figure 10. '

Since wind tunnel measﬁrements for this c0nfiguration'had been

P Ve Fo T 2 Y
made by

. S

W. Buford, a comparison was possible. The data was divided

b3



i

into angles of yaw less than 210 and greater than 210 and pairs of cublcs
fitted._ The resulting coefficients are compared in Table IV. The

agreement is excellent.

As 8 result of this rather spectacular success with the'non-linaar
static moment, the more difficult problem of Magnus and damping moments

was then conaidered.i In Appendix E it is shown that a quadratic dependence:

" of KT and K KMA on ‘& so affects the damping . of the epilcycle that the

usual linear formulas for KH KMA and KT are actually the Tollowing

combinations of coefficients:
a

| B - 9%
(Kg - Kgp) »=I<H0KMA0&2 Y. “’°>

renge. ¢ ¢2
o | (103).
¢I ‘I A 2

- K;az (§) ( ;L ¢:2) (Ko = Xpg )

} 1 2

| ' ‘ 24 |2 242

x 2 koA KB -Kph, -
 ange 10 T 12 Be * KydE) (= ¢.2 L ) (1om)

* ‘ . - 1
WhETe K_Haa = KH52 - KMABE +
0"

K;se - KTBE - %KT

Range values of and for the Army-Navy Spinner Rocket
KH

. program were fitted by least Sqnarea to Equations (103-104) and values

of KTO’ Kﬁo KMAO’ KT » and KH o were computed, In all cases the

coefficianta of KH o Were small and this quantity'was poorly determined.
Kﬁﬁe was therefore omitted from Equations (103-104) and they were fitted

aeparataly ta range values of K KMA and KT

\
Since this measurement depends on the damping exponents and hence

ia quite delicate, it waa poaaible to obtain only elght values of KT >

from KTrange and four fram (KH KMA)range. These are listad in Table v




Wind Tunnel
Range

Wind Tunnel
Range

TABLE IV

Large Yaw Results for M = 2.3

Ky e K KL62.

_90 9
B2 -1 1.01 vh.Oj} before separation
829 -1.0 0.99 3. 8 = gin 21°

L TR9% 0.0 1.45% 0.0:} after separation

. T19¥ 0.1  1.h%* 0.k & 2 sin 21°

* Bvaluated at separation

L5



Mach
No. KFBE
C.M.
1.3 14
1.8 22
2.5 19
1.8 12
* KF

o)

TABIE V

'S

Kpo CPFE_ | Kp o _KTQ Ko

Swerve _ FCM ~ ~ MCM RCM -

' Seven Caliber Long Models

17T+ 1k . -16+5 -5+1 -

“range

.(K}-I-KMA) - 20 + 14 . -

range
-- 4.8 K - 34 + 16 - 0
range '
(K, - ) =25 + 1% - --
KH “un range -
.- 5.1 Kn - 36 + 5 -- -6
range

Nine Caliber Long Models

x 6.3 Ky 22942 e 5.2

range

. range

(Ky - K) ~26+3 -- .

, for Mach number 1.% was given in Figure 6 as 8 + 1.

NOYL, Wind Tunnel measufements were made by Luchuk and'Sparkéll for T
-caliber model at M between 1.6 and 2.5, According.to these results

' =11, CP 2 5.k, '
K2 ~ Fy? e

|
\
|
|

kL6

{+

I+

i+



and the agreement between pairs of KT 5 is within the standard errors.*-
: 5

In Figures 11 - 12, a pair of plots of experimental points for
range

wd (¥
Ll \

1\.1{_ ‘V‘MA

) aro 1van
; are ivVel.

range

In all four cases values of KT o for two center of mass locations
5 .

1]
were obtained and KFBE s and CPF62

' 5 were computed from these. At

the Naval Ordnance Laboratory, Luchuk and Sparksll have made wind tunnel
measurements of these quantities and their results, as given at the bottom
of Table V, are in reasonable agreement with flight tests. Finally it
should be noted in the Table that at one point of comparison of center of

mass and swerve values of Kf 0 ( the seven caliber models at M = 1.3) the
B

agreement is good.

As a last example of this qpasi-iinear technique we will consider a
body of revolution which displayed an extremely non-linear Magnus moment.
The range values of KT for this model were obtained by E. Roecker and are
plotted versus 8e2 in Figure 13.° Althqugh these data are fitted by two
lines, only the first line is well determined. In fact if the fourth point
from the'right were ﬁeglected, the large yaw values would be reasonahly

well represented by the dashed horizontal line.

In Figure 14 the corresponding cubic segments are plotted and compared
with a BRL wind tunnel curve obtained by A. Platou. The good Qualitative
t

- Since the quasi-linear relations have been so well verified by
experiment, they should be quite valuable in the important problem of the
prediction of migsile motion from a knowledge of the force and moment.
curves. -This application of the quasi-linear technique is deséribed in

more detail in the next section.

*
Thus an observed dependence of (KH-— KMA) on magnitude of yaw 1s
' range
not necessarily due to non-linear damping moments but may bhe due to a

non-linear Magnus moment.

L7



6. PREDICTTON OF NON-LINEAR YAWING MOTTION

Although the appiication of the theory of this report to range data
analysis enhances markedly the value of spark raﬁges , an even more important’
application is the pradiction of the yawing motion of a missile acted on
by non-linear forces ﬁnd moments. The expefimental results of this report
indicate that this in&erse problem should be successfully handled by the
same theory. In this section we will outline the procedure for this
prediction problem.

First the sizes of the two arms must be obtained from the initiael

condltions
e | (105)

‘ . 19 o i@
o= (o v B e Lo, rifr e (106)

>
B

Tn order to take care of the effect of damping the trajectory should
be divided into j.nteriva.la over which neither emplitude changes by more
than 50%, The lengtﬁ of the first interval may be estimated from the |
linear damping. If ﬁhe calcuiated quasi-linear damping is much larger,
the interval mnay theﬁ be shortened and the process iterated. The lengths
of-the other intervais should be determined in a similar manner. Values .
of ¢; frequencies in non-rolling co-ordinates, can now be Lomputed from
Equations‘(92 - 93) which are simple quadratic equations.* (¢’ may be

computed from Equatiocns (87 - 88).) Then values: of ¢, may be computed

i
from Equations (E4 - E5) which are even simpler linear equations.¥

* Por ease of calculation the linearized values of ¢ s and Qs may be first
placed in the coupllng terms arising from the non-}inear geometry and an
iteration performed if needed.

|
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2 .
If a more complex polynomial dependence of KM and KT on & 1is
required, this may be handled in the following way.

_ Let

. n
Ky = 2 KM52k5 (107)
k =0
n
. 2k
Ky = KT62k6 . . (108)
k = 0

Then Equations (92 - 93) and (Eb - E5) take on the following slightly

more complex form:

) | Do 1 o . .
g% - VB, + o1 F Koo (B - )5 o (B - ) =0 (109)
n . ¢'
to 1 * 2 PR ! 1 . .
- ; - —) 1 -c.) =0 (1]
b= vy ¢ E My (8°°) g + Ko (B = A)(7) + il ) = O
%X =0
I
Ut C ZE j * |, 0k 2 2o 2
o (2p) - ¥) - Hpy + v Top (87 )y = Hg? [}Klo + Kpo Wy + K Qé]
: =2
" ! o o

- JL82(¢1 R N CH ST A (111)

M 1
N afy + a2¢1)K 2 _,
) 20
Il
R * Dk 2 L R
(2, - V) - By + ¥ Ty (87 ) = He? |(Kyg + Kpg )Py + Ky 79y
K =0

- .
Egs. (92-93) are also slightly modified by the presen.c of damping.
Lo



L2 (¢ S B ¢ Bl ) (112)

1
| Q ¢ +Q ¢
! 2 1 2
| + (-_._._._._..2_._)Klo =0

n_ . _
| x 2k pd? . 2k
vhere Moy O =5 E My o1
k=0 N °

o w2k pd -2 2k
E o &= ek = ¥ Ipow) ®
k=0 o k=0 -

i

and those terms &ppearing in the right hand summations which have powers
of B greater than 2n are neglected,*

It should be remembered that thesé équations are derived on the
essumption of a flat trajectory. The complications introduced by gravity
will be cdnsidered‘fn.a later report. In any event for a large class of
. problems this simple procedure should allow reasonably good prediction of

the motion of missiles acted by non-linear forces.
T , | SUMMARY

-1, A convenlent expansion of the aerodynamic force system for large
‘ yaw has been obtained &nd the necegsary geometric relations for

these large yawa derived

2. Relations for parameters of a linear equation which is equivalent

to the actueal- nonnlinear equation have been derived.

‘5.‘ These relations have been tested by actual firing tests and:

| excellent internal consistency has been observed. Where wind
‘tunnel measurements were avallable, good agreement has been
dbtained. i

|

‘ The effect of the terms in JL which are higher order than 8 on the

J '\ term in Equation (20) has been neglected.

\ N .
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